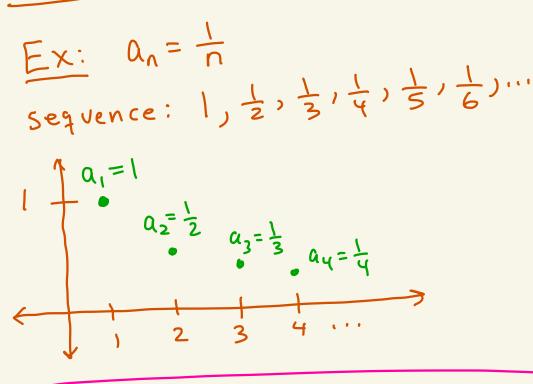
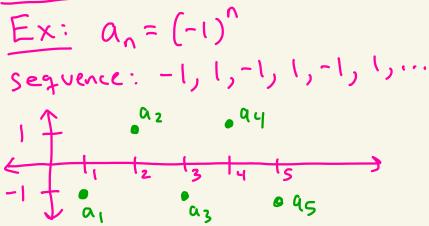
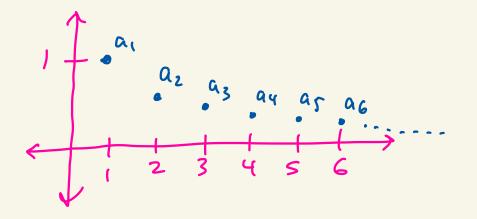
Vef: A sequence of real numbers written (an) or (an) =1 is an ordered list of real numbers a, az, az, ay, ay, as,... Note: The sequence can start from an index that isn't 1, for example you can have (an) =2 giving az, az, ay, as,...





Def: A sequence of real numbers (an) is said to converge to a limit LEIR if for every real number 270, there exists a natural number N such that if n=N, then |an-L|<E If this is the case, we write lim an=L or $a_n \longrightarrow L$. If no such Lexists, then we say that (an) PICTURE · QNH1 • 9N12 N N+1 N+2 N+3 .. $\begin{array}{c|c} \leftarrow & \downarrow & \downarrow \\ \downarrow & 2 & 3 \\ \end{array}$ n≥N Note: N depends on E. You set a different N for each E. Some people write N(E) instead of N, but we won't do that.

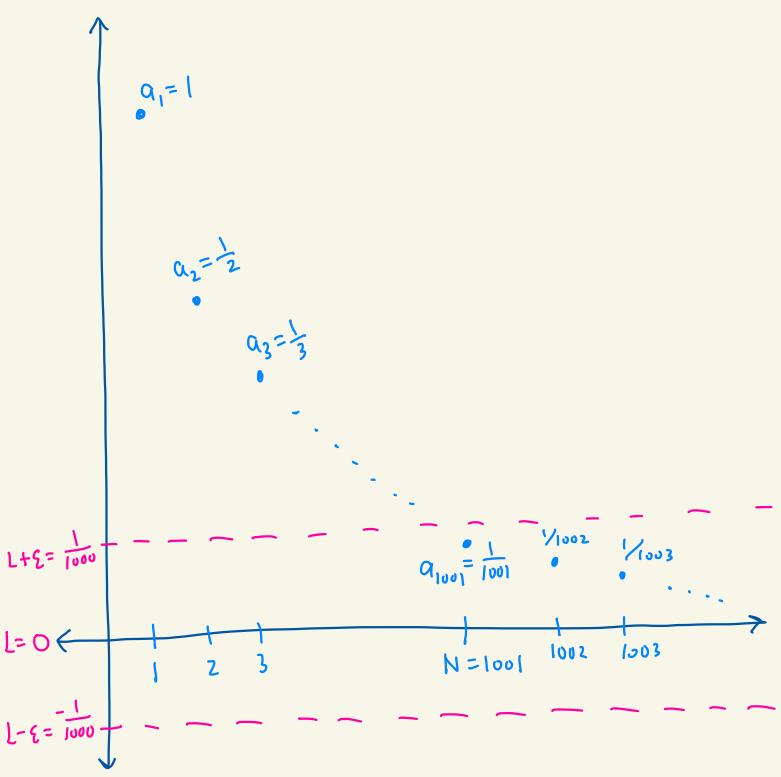
$$\frac{E_{X:}}{Sequence:} \int_{1}^{1} \frac{1}{2} \int_{2}^{1} \frac{1}{2} \int_{2}^{$$



Before we show that $\lim_{n \to \infty} \frac{1}{n} = 0$, let's get a feel for the definition. With L=0 We need to show: "for every $\varepsilon = 70$, there exists N>0 where if $n \ge N$, there $|\frac{1}{n} - 0| < \varepsilon$ "

Let's say
$$\mathcal{E} = \frac{1}{1000} = 0.001$$

Then if N=1001 we have that
if n=1001, then $|\frac{1}{n} - 0| = |\frac{1}{n}| = \frac{1}{n} \le \frac{1}{1001} < \varepsilon$



$$\frac{Claim: \lim_{n \to \infty} \frac{1}{n} = 0}{n \neq \infty}$$

$$\frac{P(oof:}{Let \leq 70.}$$

$$Pick a natural number N where $N > \frac{1}{\epsilon}.$

$$Pick a natural number N we have that$$

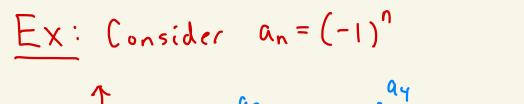
$$Then if n \geq N we have that$$

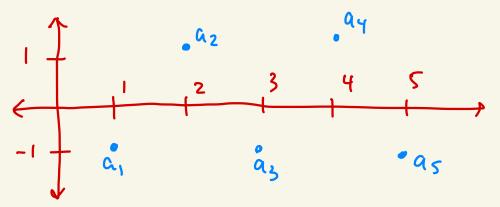
$$Then if n \geq N we have That = \frac{1}{n} \leq \frac{1}{N} < \epsilon.$$

$$\frac{1}{n} - 0 = \frac{1}{n} = \frac{1}{n} \leq \frac{1}{N} < \epsilon.$$

$$\frac{1}{n} = \frac{1}{n} \leq \frac{1}{N} < \epsilon.$$$$

Ex: If
$$c \in \mathbb{R}$$
 then $\lim_{n \to \infty} c = c$.
Proof: Let $a_n = c$ for all n .
Let $\epsilon > 0$.
Set $N = 1$.
Then if $n \ge 1$ we have
 $|a_n - c| = |c - c| = 0 < \epsilon$.
N=1 2 3 4 5

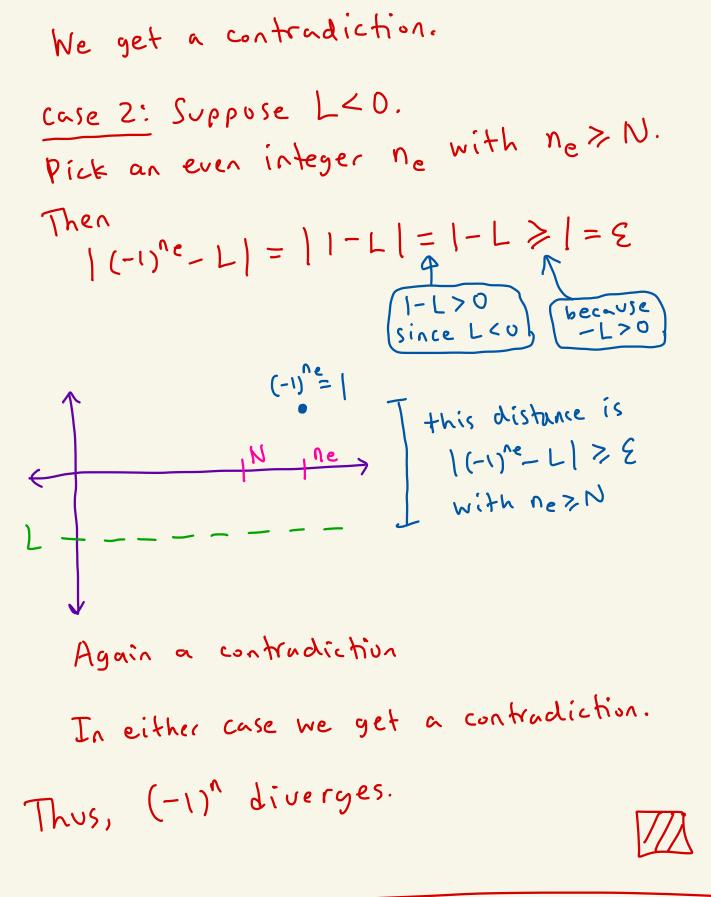




Let's show that this sequence diverges,
that is, it has no limit L.
Claim:
$$a_n = (-1)^n$$
 diverges.
proof: We prove this by contradiction.
Suppose (a_n) converges to some $L \in \mathbb{R}$.
Let $\epsilon = 1$.
Then since $(-1)^n \rightarrow L$ there must exist N
Where if $n \ge N$ then $|(-1)^n - L| < |$.
Where if $n \ge N$ then $|(-1)^n - L| < |$.
Pick an odd integer no with $n \ge N$.
Then, $|(-1)^{n_n} - L| = |-1 - L| = -(-1 - L) = |+L \ge |= 2$
Then, $|(-1)^{n_n} - L| = |-1 - L| = -(-1 - L) = |+L \ge |= 2$

$$L \xrightarrow{|N|} n_{0}$$

$$\int \frac{|N|}{(-1)^{n} = -1} \xrightarrow{|V|} \text{ with } n_{0} \mathcal{H}N$$



$$\frac{E_{X}}{n + \infty} \lim_{n \to \infty} \frac{n}{n + 1} = 1.$$

$$\frac{p(oof:}{Let \ \epsilon 70.}$$
Note that
$$\left|\frac{n}{n+1} - 1\right| = \left|\frac{n}{n+1} - \frac{n+1}{n+1}\right| = \left|\frac{-1}{n+1}\right|$$

$$\left|\frac{n}{n+1} - 1\right| = \left|\frac{n}{n+1} - \frac{n+1}{n+1}\right| = \left|\frac{-1}{n+1}\right|$$

$$\left|\frac{n}{n+1} - 1\right| < \frac{1}{n} < \frac{1}{n}$$
Side commentary:
We need N
Where if $n \ge N$
Hen if $n \ge N$ we get that
$$\left|\frac{n}{n+1} - 1\right| < \frac{1}{n} \le \frac{1}{N} < \varepsilon$$

$$\left|\frac{n}{n+1} - 1\right| < \frac{1}{n} \le \frac{1}{N} < \varepsilon$$

$$\left|\frac{n}{n+1} - 1\right| < \frac{1}{n} \le \frac{1}{N} < \varepsilon$$

$$\left|\frac{n}{n+1} - 1\right| < \frac{1}{n} \le \frac{1}{N} < \varepsilon$$

$$\left|\frac{n}{n+1} - 1\right| < \frac{1}{n} \le \frac{1}{N} < \varepsilon$$

$$\left|\frac{n}{n+1} - 1\right| < \frac{1}{n} \le \frac{1}{N} < \varepsilon$$

$$\left|\frac{n}{n \ge N}\right| = \frac{1}{N}$$

Theorem: Limits of sequences are unique.
That is, if
$$\lim_{n \to \infty} a_n = L_1$$
 and $\lim_{n \to \infty} a_n = L_2$
then $L_1 = L_2$.
Proof:
Let $E 70$.
Since $\lim_{n \to \infty} a_n = L_1$ there exists N_1 where
Since $\lim_{n \to \infty} a_n = L_1$ there exists N_2 where
Since $\lim_{n \to \infty} a_n = L_2$ there exists N_2 where
Since $\lim_{n \to \infty} a_n = L_2$ there exists N_2 where
Since $\lim_{n \to \infty} a_n = L_2$ there exists N_2 where
Since $\lim_{n \to \infty} a_n = L_2$ then $|a_n - L_2| \leq E/2$.
If $n \geq N_2$ then $|a_n - L_2| \leq E/2$.
If $n \geq N_2$ then $|a_n - L_2| \leq E/2$.
If $n \geq N_2$ then $|m \geq N_1$ and $m \geq N_2$.
Pick some m with $m \geq N_1$ and $m \geq N_2$.
Pick some m with $m \geq N_1$ and $m \geq N_2$.
Lation L_2 then $|m \geq N_1$ and $m \geq N_2$.
Lation L_2 then $|m \geq N_1$ and $m \geq N_2$.
Divertion N_1 and $m \geq N_2$.
It is proved to the model of the source of the source of the source of the construction.
If $n \geq N_1$ is proved to the model of the source of the s

Then,

$$|L_1 - L_2| = |L_1 - a_m + a_m - L_2|$$

$$|L_1 - a_m| + |a_m - L_2|$$

$$|-x| = |x|$$

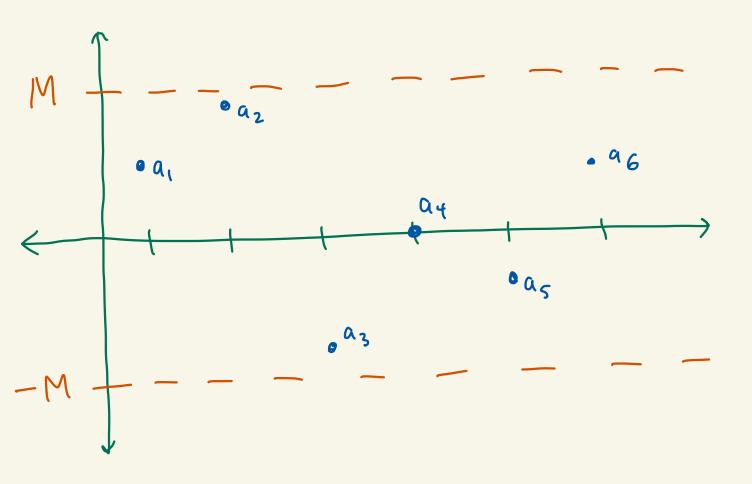
$$|-x| = |x|$$

$$|= |a_m - L_1| + |a_m - L_2|$$

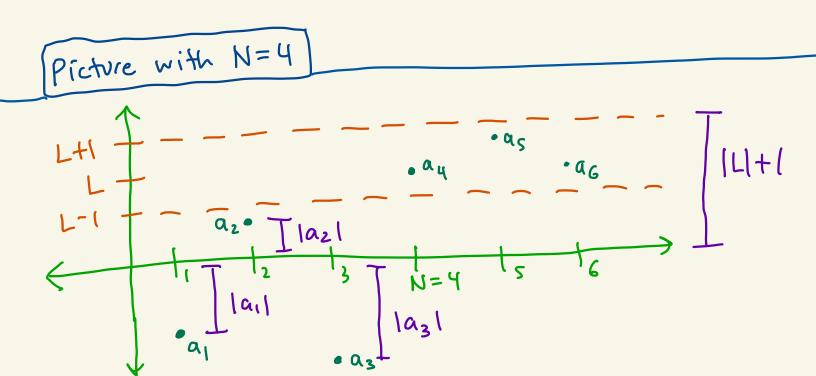
$$|-x| = |x|$$

$$|= |x|$$

Def: A sequence
$$(a_n)$$
 of real numbers
is bounded if there exists a real
number M>0 where $|a_n| \le M$ for all n.
 $-M \le a_n \le M$



Theorem: If
$$(a_n)$$
 converges,
then (a_n) is bounded.
proof:
Suppose (a_n) converges and $\lim_{n \to \infty} a_n = L$.
Pick $\mathcal{E} = I$.
Then there exists N where
Then there exists N where
Then there exists N an - LI < I.
if $n \ge N$, then $|a_n - L| < I$.
So if $n \ge N$, then
 $|a_n| = |a_n - L + L| \le |a_n - L| + |L| < |+|L|$
Let
 $M = \max \{|a_i|, |a_2|, ..., |a_{N-1}|, |+|L|\}$



Then,
$$|a_n| \leq M$$
 for all n .
So, (a_n) is bounded.

Ex:
$$(n^2)$$
 diverges.
Proof: We show the sequence $a_n = n^2$ is unbounded.
Suppose M>0.
Pick an integer no with $n_0 > \sqrt{M}$.
Then, $n_0^2 > M$.
So, $|n_0^2| > M$.
Thus, (n^2) cannot be
bounded by any M>0.
So, (n^2) diverges. \square

Algebra uf sequences theorem: Let (an) and (bn) be Convergent sequences with lim an=A and lim br = B. Let deIR. n700 Then: (dan) converges and lim dan = dA (antbn) Converges and lim (antbn) = A + B 3 (anbn) converges and lim anbn = AB (1) If B=10 and bn=10 for all n, then $(\frac{1}{b_n})$ converges with $\lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{B}$

proof: (1) If $\alpha = 0$ then $\lim_{n \to \infty} \alpha a_n = \lim_{n \to \infty} 0 = 0$. So assume $\alpha \neq 0$. Let $\epsilon > 0$. Since $\alpha_n \rightarrow A$ there exists N where $\lim_{n \to \infty} A$ then $|\alpha_n - A| < \frac{\epsilon}{|\alpha|}$. If $n \geqslant N$, then $|\alpha_n - A| < \frac{\epsilon}{|\alpha|}$. If $n \geqslant N$ then

$$\left[\left| \alpha a_{n} - \alpha A \right| = \left| \alpha \right| \left[a_{n} - A \right] \\ < \left| \alpha \right| \cdot \frac{\varepsilon}{|\alpha|} \\ = \varepsilon$$

Jo if n=== N, then $\left[\alpha a_{n} - \alpha A \right] < \varepsilon$.
Thus, $\alpha a_{n} \rightarrow \alpha A$.
2) Let $\varepsilon > 0$.
Since $a_{n} \rightarrow A$ there exists N, where
if $n \ge N_{1}$, then $\left[a_{n} - A \right] < \frac{\varepsilon}{2}$.
Since $b_{n} \rightarrow B$, there exists N₂ where
if $n \ge N_{2}$, then $\left[b_{n} - B \right] < \frac{\varepsilon}{2}$.
Let $N = \max \sum N_{1} N_{2}^{2}$.
If $n \ge N$, then
 $\left[(a_{n} + b_{n}) - (A + B) \right] = \left[(a_{n} - A) + (b_{n} - B) \right]$
 $\leq \left[a_{n} - A \right] + \left[b_{n} - B \right]$
 $\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$
 $= \varepsilon$

Thus, antbn >> A+B.

3) Let
$$\varepsilon > 0$$
.
Note that
 $|a_nb_n - AB| = |a_nb_n - b_nA + b_nA - AB|$
 $\leq |a_nb_n - b_nA| + |b_nA - AB|$
 $\leq |a_nb_n - b_nA| + |b_nA - AB|$
 $= |b_n||a_n - A| + |A||b_n - B|$

Since (bn) converges it is bounded so
there exists M70 where
$$|b_n| \leq M$$
 for all n
Since $a_n \rightarrow A$ there exists N, where
if $n \geq N$, then $|a_n - A| < \frac{\varepsilon}{2M}$.
Since $b_n \rightarrow B$ there exists N₂ where
Since $b_n \rightarrow B$ there exists N₂ where
if $n \geq N_2$ then $|b_n - B| < \frac{\varepsilon}{2(|A|+1)}$.
Alt 1 is used
in case $A = 0$

Let
$$N = \max \{ N_1, N_2 \}$$

If $n \geq N$, then
 $|a_nb_n - AB| \leq |b_n||a_n - A| + |A||b_n - B|$

$$< M \cdot \frac{\varepsilon}{2H} + |A| \cdot \frac{\varepsilon}{2(|A|+1)}$$
$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \left(\frac{|A|}{|A|+1} \right)$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
$$= \varepsilon.$$
So if $n \ge N$ then $|a_n b_n - AB| < \varepsilon.$ Thus, $a_n b_n \rightarrow AB.$

(4) Let
$$\varepsilon > 0$$
.
Note that
 $\left| \frac{1}{b_n} - \frac{1}{B} \right| = \left| \frac{B - b_n}{b_n B} \right|$
 $= \frac{1}{b_n B} \left| \frac{B - b_n}{b_n B} \right|$
 $= \frac{1}{b_n B} \left| \frac{B - b_n}{b_n B} \right|$
 $= \frac{1}{b_n B} \left| \frac{B - b_n}{b_n B} \right|$
 $= \frac{1}{b_n B} \left| \frac{B - b_n}{b_n B} \right|$

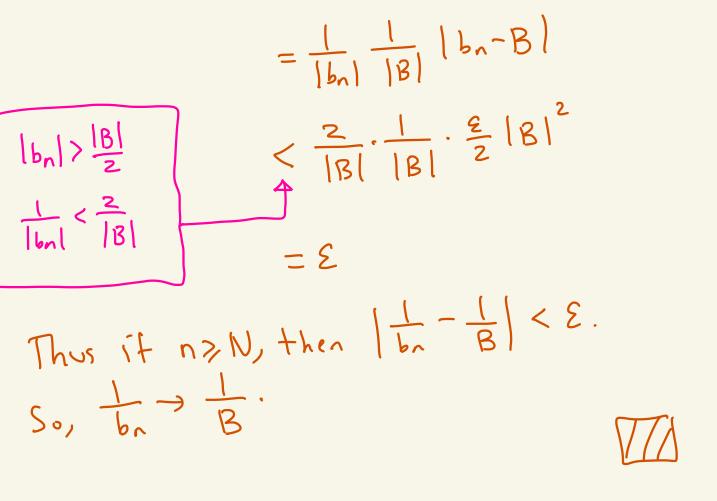
Since br > B we can find N, where it

$$\begin{split} n \geq N_{1} \quad \text{then} \quad |b_{n} - B| < \frac{|B|}{2}. \\ \text{Thus, if } n \geq N_{1} \quad \text{then} \\ ||b_{n}| - |B|| \leq |b_{n} - B| < \frac{|B|}{2} \\ ||A|| = \frac{|B|}{2}. \\ \text{Implying} \\ - |B| < ||b_{n}| - |B| < \frac{|B|}{2}. \end{split}$$

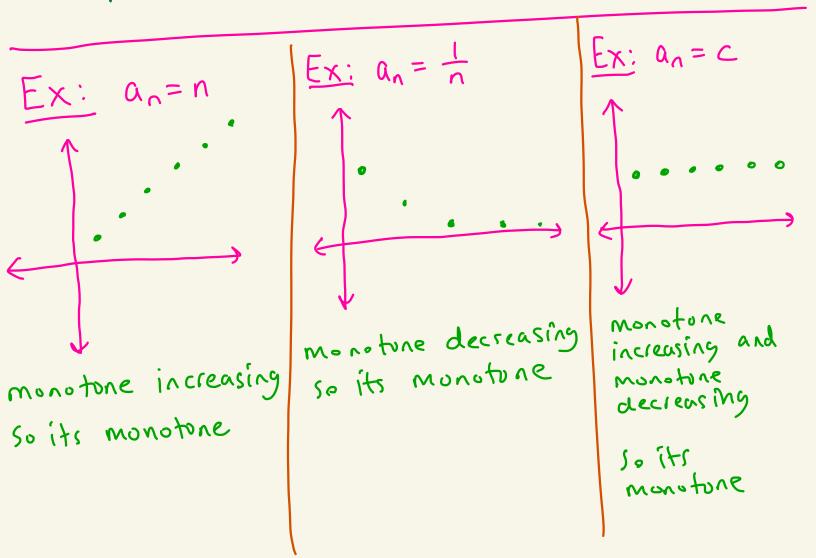
So if n>N, then

$$\frac{|B|}{2} < |b_n| < \frac{3|B|}{2}$$
we will use
this side
bel-w

Again since
$$b_n \rightarrow B$$
 we can find N_2 where
 $\overline{IF} \quad n \geqslant N_2$ then $|b_n - B| < \frac{5}{2} |B|^2$
Let $N = \max \{ N_1, N_2 \}$.
Then if $n \geqslant N$ we have
 $\left| \frac{1}{b_n} - \frac{1}{B} \right| = \frac{|b_n - B|}{|b_n||B|}$



Def: Let
$$(a_n)$$
 be a sequence of real
Numbers.
We say that (a_n) is monotone increasing
if $a_n \in a_{n+1}$ for all n .
We say that (a_n) is monotone decreasing
if $a_{n+1} \leq a_n$ for all n .
We say that (a_n) is monotone if it
We say that (a_n) is monotone if it
is either monotone increasing or
monotone decreasing



Monstone convergence theorem
If
$$(a_n)$$
 is a bounded monotone sequence,
then (a_n) converges.
Proof: We will prove this for the case where
 (a_n) is monotone increasing. The monotone
decreasing case is similar.
Since (a_n) is monotone increasing we know
that $a_n \leq a_{n+1}$ for all n .
Since (a_n) is bounded there exists
 $M > 0$ where $|a_n| \leq M$ for all n .
Let $L = \sup(S)$
We know that L exists by the
completeness axiom because the
set S is bounded above
by M.
We will show lim $a_n = L$.
Let $\epsilon > 0$.

By the inf/sup theorem there exists

$$N$$
 where $L-\varepsilon < a_N \le L$.
Since a_n is monotone increasing
we know $a_N \le a_n$ for all $n \ge N$.
So if $n \ge N$, then
 $L-\varepsilon < a_N \le a_n \le L < L+\varepsilon$
 $\left[L= \sup\{a_{1j}a_{2j}a_{3j}\dots\}\right]$
So if $n \ge N$, then $|a_n-L| < \varepsilon$.
 $because$
 $L-\varepsilon < a_n < L+\varepsilon$
Thus, $\lim_{n \to \infty} a_n = L$

Application to finding square roots
Theorem: Let
$$a > 0$$
 be a real number.
Define the sequence:
 $a_1 = any \text{ positive real number}$
 $a_{n+1} = \frac{1}{2}(a_n + \frac{a_n}{a_n}) \text{ for } n \ge 1$
Then:
 $(1)(a_n)_{n=1}^{\infty} \text{ converges}$
 $(2) \lim_{n \to \infty} a_n = \sqrt{a}$
 $(3) |a_n - \sqrt{a}| \le \frac{a_n^2 - a}{a_n} \text{ when } n \ge 2$
 $(3) |a_n - \sqrt{a}| \le \frac{a_n^2 - a}{a_n} \text{ when } n \ge 2$

Proof:

$$\frac{\text{claim (i): } a_n \ge Ja \quad \text{for } n \ge 2}{\text{Let } n \ge 1.}$$
By def we have $2a_{n+1} = a_n + \frac{a}{a_n}$.
By def we have $2a_{n+1} + a = 0$.
So, $a_n^2 - 2a_n a_{n+1} + a = 0$.
Thus, $x^2 - 2a_{n+1} \times + a = 0$ has a real root $(x = a_n)$.
Thus, $x^2 - 2a_{n+1} \times + a = 0$ has a real root $(x = a_n)$.
So, the discriminant must be non-negative.
That is, $4a_{n+1}^2 - 4a \ge 0$.
So, $a_{n+1}^2 \ge a$.

Thus,
$$a_{n+1} \ge \sqrt{a}$$
 for $n \ge 1$.
Claim (ii): $a_n \ge a_{n+1}$ for $n \ge 1$
Let $n \ge 1$.
Then,
 $a_n - a_{n+1} = a_n - \frac{1}{2}a_n - \frac{1}{2}\frac{a}{a_n} = \frac{1}{2}\left(\frac{a_n^2 - a}{a_n}\right) \ge 0$
Thus, $a_n \ge a_{n+1}$
No have shown that
 $a_2 \ge a_3 \ge a_4 \ge a_5 \ge \dots \ge \sqrt{a} \ge 0$
By the monotone convergence theorem,
 $(a_n)_{n=1}^{n}$ converges.
Elet $L = \lim_{n \to \infty} a_{n}$.
We know $a_{n+1} = \frac{1}{2}(a_n + \frac{a}{a_n})$ for $n \ge 1$.
We know $a_{n+1} = \frac{1}{2}(a_n + \frac{a}{a_n})$ for $n \ge 1$.
We know $a_{n+2} = \frac{1}{2}(a_n + \frac{a}{a_n})$ for $n \ge 1$.
We have $1 = \frac{1}{2}(L + \frac{a}{L})$
So, $2L^2 = L^2 + a$
Thus, $L^2 = a$.
And since $L > D$ we must have $L = \sqrt{a}$.
We used $a_n > 0 \to L > 0$. This follows from HW problems

3) Let
$$n \ge 2$$
.
Then, $a_n \ge \sqrt{a} \ge \frac{a}{a_n}$
 a_{bove}
 $a_n \ge \sqrt{a} = \frac{a}{\sqrt{a}}$
 $S_0, \sqrt{a} \ge \frac{a}{a_n}$

Thus,

$$0 \leq \alpha_n - \sqrt{\alpha} \leq \alpha_n - \frac{\alpha}{\alpha_n} = \frac{\alpha_n^2 - \alpha}{\alpha_n}$$

So, $|\alpha_n - \sqrt{\alpha}| \leq \frac{\alpha_n^2 - \alpha}{\alpha_n}$

Ex: Let's approximate $\sqrt{2}$. Here $\alpha = 2$. Set $\alpha_1 = 1 > 0$ We have:

$$\begin{array}{l} a_{n+1} = \frac{1}{2} \left(a_n + \frac{z}{a_n} \right) & \text{Error bound } \frac{a_n^2 - a}{a_n} \\ a_2 = \frac{1}{2} \left(1 + \frac{1}{2} \right) = \frac{3}{2} = 1, \\ \hline a_3 = \frac{1}{2} \left(\frac{3}{2} + \frac{2}{(3/2)} \right) = \frac{17}{12} & \frac{a_3^2 - 2}{a_3} = \frac{1}{1.5} \approx 0, 1666... \\ \hline a_3 = \frac{1}{2} \left(\frac{3}{2} + \frac{2}{(3/2)} \right) = \frac{17}{12} & \frac{a_3^2 - 2}{a_3} = \frac{1}{204} \approx 0, 00490196... \\ \hline \approx 1, 416666... & \hline a_4 = \frac{1}{2} \left(\frac{17}{12} + \frac{2}{19/12} \right) = \frac{577}{408} & \frac{a_4^2 - 2}{a_4} = \frac{1}{235, 4116} \\ \hline \approx 1.4142156860... & \hline a_5 = \frac{1}{2} \left(\frac{537}{408} + \frac{2}{5393/408} \right) \\ = \frac{665857}{470832} \approx 1.41421356237... & \frac{a_5^2 - 2}{a_5} = \frac{1}{313, 506, 783, 024} \\ \hline \approx 3, 1897 \times 10^{-12} \end{array}$$

We get rapid convergence here.

Def: Let
$$(a_n)$$
 be a sequence of real
numbers. Let $n_1 < n_2 < n_3 < n_4 < \dots$
be a strictly increasing sequence of
natural numbers.
Then the sequence $(a_{n_k})_{k=1}^{\infty}$ given by
 $a_{n_1}, a_{n_2}, a_{n_3}, a_{n_4}, \dots$
is called a subsequence of (a_n)

$$\frac{\text{Ex:}}{\text{sequence: } 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{4}, \frac{1}{8}, \frac{1}{9}, \frac{1}{10}, \dots$$

$$\text{subsequence: } \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \dots$$

Proof:
We say that the m-th term an is a "peak"
of our requence if
$$a_m \ge a_n$$
 for all $n \ge M$.

Suppose (a_n) has infinitely many peaks.
Then listing the peaks by increasing subscripts
We get a subsequence of peaks:
 $X_{m_1} \ge X_{m_2} \ge X_{m_3} \ge X_{m_4} \ge \cdots$
with $m_1 < m_2 < m_3 < m_4 < \cdots$
So there is a monotonically decreasing
subsequence.

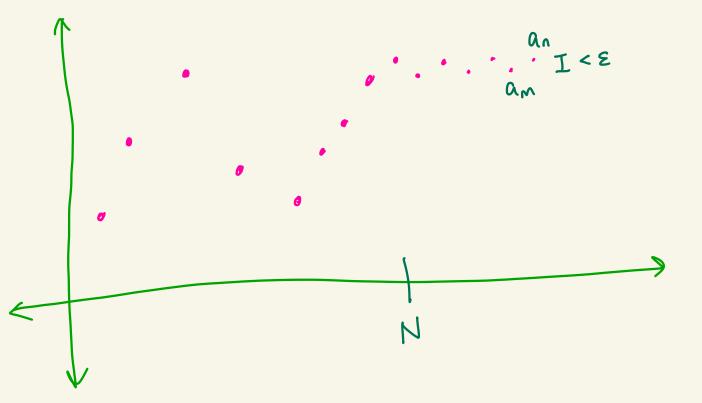
Case 2: Suppose (an) has many months for the set Si = 1 if there are no peaks. Otherwise define Si as follows. Let the peaks be listed by increasing subscripts:

$$a_{m_1} \ge a_{m_2} \ge \dots \ge a_{m_r}$$

where x_{m_r} is the last peak.
Set $s_1 = m_r + 1$.
Thus, a_{s_1} is the term immediately after the
last peak.
So, a_{s_1} is not a peak.
So, a_{s_1} is not a peak.
Thus, there exists a_{s_2} with
 $a_{s_2} < a_{s_2}$ and $s_1 < S_2$.
Then again since a_{s_2} is not a peak there
exists a_{s_3} with $a_{s_2} < a_{s_3}$ and $s_2 < S_3$.
Continuing in this way we get a subsequence
 $a_{s_1} < a_{s_2} < a_{s_3} < a_{s_4} < \cdots$
with $s_1 < s_2 < s_3 < S_4 < \cdots$
Thus, we have a monotion subsequence.

Ex: $a_n = (-1)^n$ is a bounded sequence. bounded sequence: 1, -1, 1, -1, 1, -1, 1, -1, ...convergent subsequence: 1, 1, 1, 1, 1, 1, 1, ...

Def: Let
$$(a_n)$$
 be a sequence of real
numbers. We say that (a_n) is
a Cauchy sequence if fur every ε 70
a Cauchy sequence if $n, m \ge N$
there exists N>0 where if $n, m \ge N$
then $|a_n - a_m| < \varepsilon$.



Theorem: Let
$$(a_n)$$
 be a sequence of
real numbers. Then, (a_n) converges
if and only if (a_n) is Cauchy.

Proof:
(E2) Let (a_n) be a convergent sequence
with $\lim_{n \to \infty} a_n = L$.

Let $\varepsilon > 0$.
Let $\varepsilon > 0$.

May there exists $N > 0$ where if
Then, there exists $N > 0$ where if

 $N \ge N$ then $|a_k - L| < \frac{\varepsilon}{2}$.

 $N \ge N$ then $|a_k - L| < \frac{\varepsilon}{2}$.

Thus, if $n, m \ge N$, then
 $|a_n - a_m| = |a_n - L + L - a_m|$
 $\leq |a_n - L| + |L - a_m|$
 $\leq |a_n - L| + |a_m - L|$
 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$
 $= \varepsilon$.

So, (a_n) is Cauchy.

((+) Now suppose that (an) is Cauchy.
By HW, we get that (an) is bounded.
By Boltano-Weierstrass there exists
a subsequence (
$$a_{n_{\rm E}}$$
) that converges
to some LE IR.
Let $\varepsilon > 0$.
Since (a_n) is Cauchy, there exists
N>0 where it $m_n l \ge N$ then
 $|a_m - a_{\rm E}| < \frac{\varepsilon}{2}$.
Since ($a_{n_{\rm E}}$) converges to L there
Since ($a_{n_{\rm E}}$) converges to L there
 $\varepsilon_{\rm XiSIS} = n_{\rm K} > N$ where $|a_{n_{\rm K_0}} - L| < \frac{\varepsilon}{2}$.
Thus, if $n \ge N$ we get
 $|a_n - L| = |a_n - a_{n_{\rm K_0}} + a_{n_{\rm K_0}} - L|$
 $\le |a_n - a_{n_{\rm K_0}}| + |a_{n_{\rm K_0}} - L|$
 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$

 $= \Sigma$. Thus, (an) converges to L.

Note that the (<>) direction above depended on the completeness of IR, monotore Completness wavergence axism theorem 2-W monotine theorem S Subsequence theorem proof above